143 research outputs found

    Quantum searching amidst uncertainty

    Full text link
    Consider a database most of whose entries are marked but the precise fraction of marked entries is not known. What is known is that the fraction of marked entries is 1-X, where X is a random variable that is uniformly distributed in the range (0,X_0) (X_0 is a small number). The problem is to try to select a marked item from the database in a single query. If the algorithm selects a marked item, it succeeds, else if it selects an unmarked item, it makes an error. How low can we make the probability of error? The best possible classical algorithm can lower the probability of error to O((X_0)^2). The best known quantum algorithms for this problem could also only lower the probability of error to O((X_0)^2). Using a recently invented quantum search technique, this paper gives an algorithm that reduces the probability of error to O((X_0)^3). The algorithm is asymptotically optimal.Comment: 10 page

    Simple Algorithm for Partial Quantum Search

    Full text link
    Quite often in database search, we only need to extract portion of the information about the satisfying item. Recently Radhakrishnan & Grover [RG] considered this problem in the following form: the database of NN items was divided into KK equally sized blocks. The algorithm has just to find the block containing the item of interest. The queries are exactly the same as in the standard database search problem. [RG] invented a quantum algorithm for this problem of partial search that took about 0.33N/K0.33\sqrt{N/K} fewer iterations than the quantum search algorithm. They also proved that the best any quantum algorithm could do would be to save 0.78(N/K)0.78 \sqrt(N/K) iterations. The main limitation of the algorithm was that it involved complicated analysis as a result of which it has been inaccessible to most of the community. This paper gives a simple analysis of the algorithm. This analysis is based on three elementary observations about quantum search, does not require a single equation and takes less than 2 pages.Comment: 3 pages, 3 figure

    Analysis of Generalized Grover's Quantum Search Algorithms Using Recursion Equations

    Full text link
    The recursion equation analysis of Grover's quantum search algorithm presented by Biham et al. [PRA 60, 2742 (1999)] is generalized. It is applied to the large class of Grover's type algorithms in which the Hadamard transform is replaced by any other unitary transformation and the phase inversion is replaced by a rotation by an arbitrary angle. The time evolution of the amplitudes of the marked and unmarked states, for any initial complex amplitude distribution is expressed using first order linear difference equations. These equations are solved exactly. The solution provides the number of iterations T after which the probability of finding a marked state upon measurement is the highest, as well as the value of this probability, P_max. Both T and P_max are found to depend on the averages and variances of the initial amplitude distributions of the marked and unmarked states, but not on higher moments.Comment: 8 pages, no figures. To appear in Phys. Rev.

    Quantum computing of molecular magnet Mn12_{12}

    Get PDF
    Quantum computation in molecular magnets is studied by solving the time-dependent Schr\"{o}dinger equation numerically. Following Leuenberger and Loss (Nature (London) 410, 789(2001)), an external oscillating magnetic field is applied to populate and manipulate the spin coherent states in molecular magnet Mn12_{12}. The conditions to realize parallel recording and reading data bases of Grover algorithsm in molecular magnets are discussed in details. It is found that an accurate duration time of magnetic pulse as well as the amplitudes are required to design the device of quantum computing.Comment: 3 pages, 1 figur

    Query complexity for searching multiple marked states from an unsorted database

    Full text link
    An important and usual problem is to search all states we want from a database with a large number of states. In such, recall is vital. Grover's original quantum search algorithm has been generalized to the case of multiple solutions, but no one has calculated the query complexity in this case. We will use a generalized algorithm with higher precision to solve such a search problem that we should find all marked states and show that the practical query complexity increases with the number of marked states. In the end we will introduce an algorithm for the problem on a ``duality computer'' and show its advantage over other algorithms.Comment: 4 pages,4 figures,twocolum

    Spin-based quantum information processing with semiconductor quantum dots and cavity QED

    Get PDF
    A quantum information processing scheme is proposed with semiconductor quantum dots located in a high-Q single mode QED cavity. The spin degrees of freedom of one excess conduction electron of the quantum dots are employed as qubits. Excitonic states, which can be produced ultrafastly with optical operation, are used as auxiliary states in the realization of quantum gates. We show how properly tailored ultrafast laser pulses and Pauli-blocking effects, can be used to achieve a universal encoded quantum computing.Comment: RevTex, 2 figure

    Quantum circuit implementation of the Hamiltonian versions of Grover's algorithm

    Full text link
    We analyze three different quantum search algorithms, the traditional Grover's algorithm, its continuous-time analogue by Hamiltonian evolution, and finally the quantum search by local adiabatic evolution. We show that they are closely related algorithms in the sense that they all perform a rotation, at a constant angular velocity, from a uniform superposition of all states to the solution state. This make it possible to implement the last two algorithms by Hamiltonian evolution on a conventional quantum circuit, while keeping the quadratic speedup of Grover's original algorithm.Comment: 5 pages, 3 figure

    Fast Quantum Search Algorithms in Protein Sequence Comparison - Quantum Biocomputing

    Get PDF
    Quantum search algorithms are considered in the context of protein sequence comparison in biocomputing. Given a sample protein sequence of length m (i.e m residues), the problem considered is to find an optimal match in a large database containing N residues. Initially, Grover's quantum search algorithm is applied to a simple illustrative case - namely where the database forms a complete set of states over the 2^m basis states of a m qubit register, and thus is known to contain the exact sequence of interest. This example demonstrates explicitly the typical O(sqrt{N}) speedup on the classical O(N) requirements. An algorithm is then presented for the (more realistic) case where the database may contain repeat sequences, and may not necessarily contain an exact match to the sample sequence. In terms of minimizing the Hamming distance between the sample sequence and the database subsequences the algorithm finds an optimal alignment, in O(sqrt{N}) steps, by employing an extension of Grover's algorithm, due to Boyer, Brassard, Hoyer and Tapp for the case when the number of matches is not a priori known.Comment: LaTeX, 5 page

    Quantum Probabilistic Subroutines and Problems in Number Theory

    Full text link
    We present a quantum version of the classical probabilistic algorithms aˋ\grave{a} la Rabin. The quantum algorithm is based on the essential use of Grover's operator for the quantum search of a database and of Shor's Fourier transform for extracting the periodicity of a function, and their combined use in the counting algorithm originally introduced by Brassard et al. One of the main features of our quantum probabilistic algorithm is its full unitarity and reversibility, which would make its use possible as part of larger and more complicated networks in quantum computers. As an example of this we describe polynomial time algorithms for studying some important problems in number theory, such as the test of the primality of an integer, the so called 'prime number theorem' and Hardy and Littlewood's conjecture about the asymptotic number of representations of an even integer as a sum of two primes.Comment: 9 pages, RevTex, revised version, accepted for publication on PRA: improvement in use of memory space for quantum primality test algorithm further clarified and typos in the notation correcte

    Quantum Search with Two-atom Collisions in Cavity QED

    Full text link
    We propose a scheme to implement two-qubit Grover's quantum search algorithm using Cavity Quantum Electrodynamics. Circular Rydberg atoms are used as quantum bits (qubits). They interact with the electromagnetic field of a non-resonant cavity . The quantum gate dynamics is provided by a cavity-assisted collision, robust against decoherence processes. We present the detailed procedure and analyze the experimental feasibility.Comment: 4 pages, 2 figure
    • 

    corecore